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Abstract 

Yang-MiUs potentials and fields on Minkowski space-time are equivalent to connections 
and curvatures for corresponding principle fibre bundles over Minkowski space-time. 
Therefore, the usual Yang-Mills field equations, together with Bianchi's identities, define 
transport equations for the connection and curvature with respect to a given observer 
field (inertial system). This equivalence is worked out; furthermore, the notion of sym- 
metric, particularly spherically symmetric Yang-Mills connections is transposed to the 
bundle description. We show that the restrictions on the Yang-Mflts connection imposed 
by spherical symmetry are by no means as severe as assumed by Ikeda and Miyachi. 

1. Introduction 

When looking at geometrical objects defined on Minkowski space-time, we 
would immediately enumerate two types of quantities, tensors and quantum 
fields transforming in a unique way under some representation of the Lorentz 
group. Physical arguments and physical principles will rule out some of these 
quantities; e.g., there are no geometrical reasons for excluding infinite spin 
systems on Minkowski space-time, but physical arguments based on the mass 
spectrum, locality and other assumptions in a local quantum field theory will 
help to eliminate most of them (O'Raifeartaigh, 1970). 

The above-mentioned quantities are intimately related to the Lorentz group; 
however, on Minkowski space-time there exists a great deal of other geometri- 
cal structures which can be always attached to a manifold, some of them were 
thought to be describing internal symmetries of particles (Yang & Mills, 1954; 
Utiyama, 1956), properties of particles independent of space-time in the sense 
that they are inherent, at each point, to space-time. Before asking the question 
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which internal symmetry group is the adequate one in fitting the stand of to- 
day's experimental data, I would like, therefore, to turn the question to which 
internal properties can be constructed on Minkowski space-time and, then, 
which can be ruled out on the strength of physical and symmetry principles. 
The first such internal geometrical structures were welded upon Minkowski 
space-time by Yang & Mills (1954) in attempting to tie together the isospin 
behaviour of particles with internal properties of Minkowski space-time; the 
internal structure of the Yang-Mills theory was shown to be equivalent to a 
principal fibre bundle structure over Minkowski space-time (Kerbrat, 1970; 
Loos, 1967). 

In the following, we shall work out the geometrical contents of such a 
general 'curvature theory' over Minkowski space, and especially the meaning 
of the principle of minimal interaction which is commonly used as the funda- 
mental construction principle for these types of 'fields'. In order to get more 
insight into the meaning of this principle, let us first give the interpretation of 
this principle in the gravitational case. In Einstein's theory, gravitation is des- 
cribed by the properties of Lorentzian manifolds, characterised, say, by the 
corresponding metric or the Christoffel symbols. Assume we were to translate 
an interaction theory (a non-gravitational one), expressed in terms of differen- 
tial equations involving tensor fields and quantum fields on Minkowski space- 
time, into the corresponding theory on a curved space-time, then the principle 
of minimal interaction contains the information of how to construct the inter- 
action theory in this case: replace ordinary derivatives of the tensor or quantum 
fields by covariant ones. But it never claims how to express the gravitation 
theory itself. 

A general Yang-Mills theory proceeds to replace a Lorentz covariant object 
(transforming under some representation of the Lorentz group) by a set of 

such objects ~0 a, a = 1, 2 . . . , N ,  which transform at the same time also under 
a gauge group G 

~ga'(X) = S-lab~Ob(X), S = S(x )EG (1.1) 

~o itself obeys a differential equation, most of them are Dirac-like equations, 

L(¢) = 0 

Then the equation, including fields with internal degrees of freedom, follows 
immediately in the spirit of  the minimal interaction principle by 

3,  -+ ~,6ab + P J b  (1.2) 

where the Pua b represent this new internal structure. Let me add some remarks 
to the above description: 

First of all, (1.1) only makes sense if we define the geometrical meaning of 
the ~oa's: according to the transformation property (1.1) under gauge transfor- 
mations the ~0 a are the components of a 'vector', called internal vector, with 
respect to some internal basis attached at each point on Minkowski space-time. 
Therefore, the geometrical background for (1.1) is the following: On Minkowski 
space-time, there is defined a principal fibre bundle P(V, G, rr) determined by 
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the structure group G, projection 7r and spanned by the set of all bases {Ca} 
(Kobayashi & Nomizu, 1963; Loos, 1967); the principle of minimal interaction 
(1.2) means that the original Dirac theory without internal degrees of freedom 
goes over to a theory with coupling to the internal space P. This coupling is 
given in terms of the connection coefficients Pua~ with respect to a special 
basis, cross-section, (x, ~a), and a given connection in the principal fibre 
bundle P, usually written as covariant derivatives 

The principle of minimal interaction never tells us how to construct this inter- 
nal connection. In our geometrical language, we have more information about 
the connection whenever we know how a special internal frame-the elements 
of P in the following are called Yang-Mills frames or only frames, whenever 
there is no confusion with the elements of the linear frame bundle over 
Minkowski space-say ~, is transported along four different directions in 
space-time with respect to horizontal frames in these directions. Especially if 
there exists a frame ~ which is parallely transported in four independent 
directions, i.e. 

VX~ a = O, ~#XETV, Va, (1~4) 

then the connection will be flat, i.e. the curvature of the connection vanishes. 
These Yang-Mills geometries defined on Minkowski space-time can be 

treated more easily than the corresponding geometries on curved space-times 
because of the flatness of the underlying base manifold~ i.e. because the des- 
cription of the observers, inertial frames, assumes a partially simple form; 
moreover, interactions between these internal geometries and gravitation are 
excluded from the given picture. 

In Section 2 we summarise the differential geometry of the Yang-MiUs 
'bundles; the equivalence between the physical formulation of a Yang-Mills 
theory and the connection approach for the corresponding principal fibre 
;bundle is essentially based on the transformation law of the connection form 
under transformations between local cross-sections. Section 3 deals with the 
dynamics for a Yang-Mflls connection and the corresponding transport of 
curvature and associated elements along an observer trajectory on Minkowski 
space-time. This dynamics will be called curvature dynamics of the internal 
geometries. The dynamics of these structures turns out to be self-determining 
in the sense that 0nly the transport of the time-like part of the curvature, 
• /~oi, is not specified by the structure of the connection itself. 

A rough classification scheme for the Yang-Mills geometries is usually 
based on the holonomy structure of the connection for a particular principal 
fibre bundle (see Section 4); symmetries for a connection were expected to 
reduce the infinitesimal holonomy group (Ikeda & Miyachi, 1962; Loos, 1965). 
Therefore, in order to analyse these restrictions, we shall work out an exact 
definition of a Yang-Mills symmetry in Section 5 over the notion of  bundte 
automorphisms. In general, such symmetry transformations imply restrictions 
on the constituents of the Lie algebra of the infinitesimal holonomy group. 
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Particularly, symmetry transformations induced by a subgroup of the Poincar6 
group (considered as the isometry group of Minkowski space-time) are investi- 
gated, and this will enable us to show that the infinffesimal hotonomy group 
for a spherically symmetric Yang-Mills connection will not necessarily be 
Abelian. A specific example will be published in a forthcoming paper. 

2. Differential Geometry o f  Yang-Mills Bundles over Minkowski  Space-Time 

In the spirit of differential geometry of fibre bundles (Kobayashi & Nomizu, 
1963; Trautman, 1970) vector fields can be considered as functions over the 
corresponding principal fibre bundle P, transforming in a special way under 
fibre transformations. Therefore, the basic object for tile internal structures is 
P itself, and not an associated structure. Since the notion of a connection in a 
principal fibre bundle is the most fundamental for the following discussions, 
let us summarise the most important aspects. A connection r of P is a distri- 
bution of a subspace HuC TuP to every u E P  so that 7r, defines a vector space 
isomorphism 7r, : H u -~ T~(u)V and the elements of H are invariant under the 
fight action of the structure group G on the fibres;H u is called horizontal 
subspace. Since G acts transitively and effectively on the fibres of P, there 
exists an isomorphism between the tangent space on the fibres and the Lie 
algebra of the structure group G, identified in the following with Ge = TeG. 
The inverse mapping of  this isomorphism defines the connection form co with 
respect to a given connection I" (as a generalisation of the canonical 1-forms 
on Lie groups) and, conversely, a given Lie algebra-valued 1-form co defines 
in a unique way a connection P in P. With respect to a given cross-section o: 
UC V-> P co is usually decomposed 

~ u  = ( F A E A )  dxu, E A some basis of Ge, A = 1 , . . . ,  dim G 

(2.1) 

Every curve in the Minkowski space-time V, say x t, t E  [a, b],  gives rise to a 
set of curves u(t) in P, namely to all those which project down to x t 

~r(u(O) = x t ,  t ~ [a, b] 

Now, the lifting lemma for connections on principle fibre bundles distinguishes 
one special type of curves in P, the horizontal curves u(t). A curve u(t) in P is 
called horizontal if 7r(u(t)) = x t  and the tangent vector h(t) is horizontal for all 
parameter values t with respect to the given connection or, in other words, 

~,(~(0) = o, t ~ [a, b]  

Li f t ingLemma.  Let a connection I ~ in P be given, w its connection form. 
Consider a curve x t ,  t C [a, b], in V and a frame u a for t = a; then there exists 
a unique horizontal curve u(t) in P with the initial conditions u(a) = Ua. 

The proof of this lemma is based on the transformation property for the 
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connection form under transformation between two different curves u(t) and 
v(t) in P with 

u(t) = v(t)g(t), g(t) E G for every t 

This means, to two curves in P there is associated a unique curve in the structure 
group G. Then the corresponding connection forms are related by 

co(h(t)) = adg -1 (t)w(b(t))  + g - t  (t)~(t) (2.2) 

~(t) being the tangent vector to the curve g(t) in G at the point g(t);  therefore 
g-l ( t )~( t )  = Og(t)(~(t))EGe (0 is the canonical 1-form for the Lie group G). 
u(t) is horizontal iff 

Og(t)(~(t)) = A(t) ,  A(t) a continuous curve in Ge (2.3) 

This defines a differential equation on the Lie group G with initial condition 
g(a) = e, the unity element in G; the differential equation (2.3) has always a 
uniquely defined solution (Kobayashi & Nomizu, 1963), in as much as we 
have in (2.3) a generalization of  the differential equation for A = const., cor- 
responding to the 1-parameter subgroups in G. 

As a consequence o f  (2.2) we obtain the transformation of  the connection 
form under cross-section transformations; say co is locally given with respect 
to the cross-section a : x --> (x, ~ba), a = 1 . . . . .  N,  by (2.1), and let us be given 
another " ' ' cross-section a : x -+ (x, ~a), then there exists a g E G  for each x @U 

Ca = ~ bgba, g : g ( x )  on U 

such that 

co~ ,a b _ - l a  c - g c(dg b + f',edgabdx•) (2.4) 

In (2z4) we find the usual transformation property of  the Yang-Mills poten- 
tials F~ab under gauge transformations (1.1). A second consequence of  (2.2) is 
an interpretation of  the covariant derivative for objects associated with the 
principal fibre bundle P. 

Definition. a is called pseudo-tensorial p-form of  type adG, G being always 
the structure group of  P, if 

(1) a is a Ge-valued p-form onP;  
(2) a is of  type adG, i.e. 

R ~ a = a d g - l a  for all g E G  

a is a tensorial form of  type adG if 

a()( ,  . . . . .  J~v) = 0 

whenever at least one of  the f2 i E TuP is vertical. 

Tensorial forms correspond to Lie algebra-valued functions)~on P, which 
are of  type adG (Kobayashi & Nomizu, 1963). In analogy to the definition of  
the covariant derivative of  functions on the linear frame bundle we define 
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Definition. I f X  is a vector field on V, f s o m e  set of  functions on P 

Vx¢: = Xu .f, x = 7r(u) (2.5) 

where J[u is the horizontal lift of  X to P, ~ is the geometrical object on V 
which corresponds to f 

As an example, an internal vector field ~0 on an open set U C  Vis determined 
by a set of  functions ~a, a = 1 . . . .  ,N,  which transform under the right action 
R of  the structure group G on the fibres rr-1 (x) 

~a(ug) = g- lab~b(u) ,  U e 7r-l(x) a n d g E G  (2.6) 

Conversely, the set of  functions ~a defines in a unique way a vector field 
with respect to a chosen cross-section a : U-+ P 

Cu := a*~ (2.7) 

Let r*  be the parallel displacement of  the fibre 7r-l(Xo) along the curve x t in 
V; then ~'* : r r - l (xo)  -+ ~r- l (x l )  is an isomorphism according to the lifting 
lemrna and the fact that r*  commutes with the right action R on the fibres. 
With respect to the horizontal curve u(t), definition (2.5) of  the covariant 
derivative is equivalent to 

X u . f = u(t))  t t=o 

which means the covariant differentiation of  some geometrical object is 
equivalent to differentiate the corresponding set of  functions on P with 
respect to a horizontal curve in the given direction. And therefore, the 
'generalised Christoffel symbols'  I~uao in (1.3) and (2.1) contain the infor- 
mation of  how a Yang-MiUs frame is transported with respect to the 
horizontal frame in the given space-time direction X. The Yang-Mills con- 
nection I? is completely determined by the information of  how a Yang-Mills 
frame is transported with respect to the corresponding horizontal frames in 
f o u r  independent  space-time directions. In general, we have only this infor- 
mation for one time-like direction representing the trajectory of  an observer. 
As we shall see in the next section, the dynamics for such a curvature theory 
will completely determine the space-like parts of  the connection together 
with a given current. 

I f  a is a pseudo-tensorial form of  type adG, we define the horizontal part 
of  a by 

(hor or) (Y~ 1 . . . . .  )(p) := ot(hor 21 . . . . .  hot Xp) (2.8) 

especially, f2 := hor dco defines the curvature 2-form and is a tensorial 2-form 
of  type adG which enables the decomposition 

a = l ~ o o d x O  a dx  a (2.9) 
2 
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with respect to a local cross-section a./~oo is now a skew-symmetric Ge-valued 
tensor, related to the connection form by the second structure equation on a 
principal fibre bundle 

d ~  = -- 1 [co, 6ol + ,.Q (2.10) 
2 

or 

koo = aoro - ~oro + [rp, to] (2.l l) 

( , ) being the Lie bracket in the Lie algebra G e and at the same time an 
expression for the exterior product o f  1-forms. The tensorial form a can be 
decomposed locally as 

1 
= ~. Q o l . . .  pp dxpl " '"  dxOp 

and correspondingly its covariant derivative 

VLQpl , . . p p  = ~XQpl . . p p  

which satisfies the following two identities 

~ ~ 1 /~ 
V[xVula = ~ [ xu, Q] 

1 ~ OX.] 

Bianchi identities read as 

or locally expressed 

N 

+ [Fx, Qpl . . .  pp] (2.12) 

for a O-form ~ (2.13) 

for a 2-form ~ (2.14) 

1 1 
dr2 

Z 2 
(2.15) 

V [uRoo l = 0 (2.15a) 

3. The Dynamics for the Yang-Mills Connection 

In this section we shall relate the dynamics for the connection of  a Yang- 
Mills bundle P(V, G, 7r) over Minkowski space-time in an intrinsic manner to 
the observer systems. Take a time-like future pointing vector field V~' on V, 
VuO u = d/dt; then a Yang-Mills frame 5 = (x, ~a) is horizontal along VU for a 
given connection F in P iff 

are the connection coefficients with 
respect to the cross-section 5 (3.1) 
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The contraction of the structure equation (2.11)with VU and a second vector 
field K u orthogonal to VU gives 

d ( F ~ K  a) =/~a3 leaK ~ (3.2) 

or especially for an adjusted coordinate system with V u = 6oU, K e' = 6i c~ 

d ~ ~ 
-dr p i  = R o i  and Po = 0 (3.2a) 

meaning that/~oi determine the dynamics for the connection coefficients Fi, 
which we call in the following the space-like part of the connection form co, 
/~oi correspondingly the time-like part of the curvature form. 

A second dynamical equation follows immediately from the Bianchi 
identities (2.15) by contraction with Vu, K s,  L x being orthogonal to Vu and 
K°':t 

+ [I a ,Rxu ] = 0 

Vg a u ~ c~ ~ K°'  L x = - L ~ a x.R u ~ V~ K c~ _ K°~ a ~R  x u VU L x 

- [I~;~L x, kuu  V~/~] - [KC@a, Rx ,  VUL x] 

d k xK L x = ah)  

Especially, for V~ = 60U,K ~ = 6ea,L x = 6/x 

 TRki = Fki¢, ok) = -- + V Roi 

(3.3) 

(3.4) 

Therefore, according to (3.2a) and (3.4a) the dynamics for the space4ike part 
of the connection and for the space-like part of the curvature is completely 
determined by the time-like part of the curvature,/~0i, considered as a field 
and determined with respect to a field of observers; these components are 
often called 'electrical' components of the curvature; in other words, the only 
'free observable' for such a geometrical curvature theory is the time-like part 
of the curvature, since both, the spacedike connection and the space-like 
curvature, are predetermined by the assumed structure of a principal fibre 
bundle. In order to close up the dynamical system for the internal geometry, 
we expect the existence of a current-like object ~ ,  Ge-valued and of type adG, 
coupled to the time-like curvature 

d / ~ o ,  or V ~ O u R u o ~ V U K a ~ . ~ K  a (3.5) L, 
all quantities expressed with respect to a horizontal cross-section a in the 
direction of VU. In general, this current ]i,  governing over the time variation 
of/~oi, will have an internal part related to the internal geometry of the 
principal fibre bundle, which a comparison with (3.4) wilt suggest. 

"~ V, K and L are always given in terms of inertial coordinates. 

(3.4a) 
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Working all the time with a horizontal cross-section a for the Yang-Mills 
bundle P would emphasise in an inadequate way the role of these special 
frames and, moreover, a horizontal frame for the direction V u will be in 
general no longer horizontal for another time-like direction V'u. Therefore, 
the dynamics (3.2), (3.4) and (3.5) should not depend on the chosen frame 
or, in other words, on the chosen observer. This implies that the differential 
equations should be 'internal covariant' and the current a~ of type adG. But 
we see we could interpret this principle of 'internal covariance' in the spirit 
of the principle of covariance in General Relativity, since the deeper meaning 
of even the principle of 'internal covariance' is that the whole dynamics for 
our internal curvature theory should not depend on the special observer 
system even on the background of Minkowski space-time. We choose in the 
following a cross-section which is not horizontal in the direction V t'. The 
second structure equation is a covariant equation 

d ~ ~ tz  a 

x + v . )  - v" ,  (3.6) 

or in terms of our special directions 

d Pi = Roi + ~iPo -- []~0, Pi] (3.6a) dt 

The dynamics for the space-like connection is contained in/~oi and Po, the 
latter gives the transport of the chosen frame along the direction I~.  Bianchi 
identities are also internal covariant equations 

Vu~Tu(RaaKaLa)=- La~7a(RuaKaV~) + K'~V~(Rua V"L a) (3.7) 

or especially 

d ~, ~ 

~ Rki = - ~'Rog + CTgkoi - [Po,Rki] (3.7a) 

The remaining problem is to find the internal part of the current in (3.5) such 
that the possibilities for the time-like curvature are not too severely restricted. 
The idea to close the geometrical theory" with a covariant 'conservation equation' 
for the external part of the current ~u x of the type 

  yox. = o (3.8) 

suggests the use of the Yang-Mflls type equations 

which turn out to be a generalisation of Maxwell's equations for principal fibre 
bundles with non-Abetian structure groups (Uzes, 1971) (g is some coupling 
constant). The 'conservation equation' (3.8) proceeds in this case automatically 
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from the identity (2.14). Furthermore, (3.9) is a covariant equation and cor- 
responds to the 'dual Bianchi equations' 

V[,*Rpa] =g*]upo (3.10) 

1 
* 1 ~  = - -  e~po/~ pa (3.1 t) 

2 

This would imply for the time-like curvature/}oi, which corresponds to */~gQ, 

g ~ 
+ [Pp, * /~ ,  ] + [fo,  */}~,o ] = ~- % o a J  ~ (3.12) 

then 

V~.(*~uxKaL x) = _ LxVX(*/~.e V"K ~) + K~7~(*R.x V"L x) 

- g].ax V~KeLX (3.13) 

or especially 

~0 *Rki = -- ~i*Rok + ~k *Roi - g*jeXoki 
- -  r ~¢  X 
- - F ki - g  ~o~q (3.13a) 

The vacuum Yang-MiUs equations (3.9) follow from a variational principle for 
the Yang-Mills connection (Kerbrat, 1970) 

I =  Tr fD l~"~"Vd4x (3.14) 

with the associated energy-momentum tensor for the connection 

T,V=Tr /~,p/~pv + lg,uV/~p~/~pa} (3.15) 

Remark. Equations (3.7a) and (3.13a) show that the evolution of the com- 
ponents of the internal curvature along an observer trajectory is governed by 
the variation of the dual curvature elements in space-like directions; from_ a 
field theoretical point of view, these elements are determined by the field 
equations; for our observer oriented point of view, these elements satisfy 
further differential equations which follow from the elements of the Lie algebra 
of the infinitesimal hotomy group (cf. next section). With respect to a horizon- 
tal Yang-Mills frame we find, e.g., 

d ~~  d ~ 
- -  V,.Rok = ~ o k  
dt 

= d ~  ~ d ~  
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which follows also immediately from the identity (cf. equation (4.4)) 

- k e g  = [Roi,  ko ] 

If we knew a solution for the dynamical equations of the curvature with cor- 
responding initial conditions, then we would have the right-hand side of (3.16) 
except the first term; therefore we need evolution equations for higher order 
elements of the holonomy algebra. As a consequence, we get a countable set 
of differential equations associated with a given observer trajectory in space- 
time for all the elements spanning the subspaces mx (defined in the next 
section) of the Lie algebra of the holonomy group (for all k = 0, 1 . . . .  ). 

4. Holonomy Structure of Yang-Mills Bundles 

Since the curvature structure of Yang-Mills bundles is a less intuitive 
structure than the geometry of the linear or the Lorentz frame bundle over 
space-time, we have to find a rough classification scheme for these geometries. 
The most obvious one is based on the infinitesimal holonomy group and its 
Lie algebra which is generated by the curvature elements and higher Order 
covariant derivatives of the curvature (Kobayaski & Nomizu, 1963; 
Lichnerowicz, 1962; Ikeda & Miyachi, 1962; Loos, 1965). Symmetries for a 
Yang-Mills connection were expected to reduce the number of internal 
degrees of freedom in the sense that the infinitesimal holonomy group is, e.g., 
perfect in some cases, at least in the case of spherically symmetric h01onomy 
groups for source-free regions (Ikeda & Miyachi, 1962; Loos, 1965). The lack 
of a first structure equation for a Yang-Mills connection has the consequence 
that all the usual 'symmetries' of the Riemannian curvature tensor R~p~ have 
no sense and do not exist, because internal labels and space-time indices can- 
not be mixed up; they have a completely different meaning. A Yang-Mills 
curvature cannot be considered in general as a fourth-rank tensor over space- 
time. 

In the following, we define a set of spaces mk(u), u being a fixed frame on 
P (Kobayaski & Nomizu, 1963): 

(1) too(u)= W); v, W Hu} 
(2) let fdenote  a set of  functions of type adG, Ge-valued, of the form 

fL= 21 . . .  Xk(f2(V, W));-gl, - • -, )~g, 17, I~ horizontal, 

k = 1 , 2  . . . .  

mk(u ) := (~f'Em~_l(U) o f f  of form (4.1)}, k = 1,2 . . . .  (4.1) 

(3) H'e(u) as the union of all the spaces mk(u ). 

If u is a local cross-section, then the functions of type (k) correspond to 
elements of the form 

. . .  . . .  % k0o v o  (4 .2)  

In general, for C ~ - connections, the set H'e(U) is a sub-algebra of the Lie 
algebra of the local holonomy group (Kobayashi & Nomizu, 1963), and the 
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two algebras are identical in the case of analytic connections (Lichnerowicz, 
1962). Especially, we find a relation 

Lemma 1. 

[mk(u), ms(u)] ~ mk+s+2(u), ~ k, s (4.3) 

which follows, e.g., from the local identity for tensoriat 2-forms 

V [xVuleo~ = ~ [/}ka, 5%:,] (4.4) 

For the next section, we prepare a fundamental temma for functions of type 
(4.t), locally represented by (4.2) (Kobayashi & Nomizu, 1963). 

Lemma 2. (1) If)~ is a vector field on P, invariant under Lhe right action R 
(e.g. induced by a local symmetry transformation), then X.  f is also a function 
of type adG. 

(2) For any vector field X: 

verX. f =  - [Cou(X),f(u)] (4.5) 

(3) For any horizontal vector field X and ~" on P: 

vet [-~, ~']u. 37= 2 [~u(X, Y),f(u)] (4.6) 

(1) and (2) are immediate consequences of the definition of a connection. 
(3) Uses the second structure equation 

~2u(f( ' ~) = deou(~ ' ~z), if)~ and ]~ are horizontal, 

_ 1 ~ u ( [ X ,  ~7] ) 

Then (4.5) with )~ --> IX', ~'] gives (4.6). 

5. Yang-Mills Symmetries 

The idea for the definition of a bundle symmetry transformation is based 
on the bundle automorphisms f P(V, G, 70 --> P(V, G, 70 which consist in 
general of three different mappings; a bundle automorphism should map 
fibres into fibres, i.e. if u, u 'E  7r -1 (x), then 3 mappings fe  and f v  such that 

fp: ~-l(x)-~ ~-Iffv(x)) 
re(u) and fp(u') belong to the same fibre. But because of the structure of a 
principal fibre bundle 3 an element ~ E G : fp(u') = fp(u)~, and a g ~ G : u' = 
Rgu. Then g-+ ~ defines a homomorphism h: G -+ G. 

Definition (Kobayashi & Nomizu, 1963). A bundle automorphism 
f :P(V, G, 70 -+ P(V, G, 70 consists of 

(1) a diffeomorphismfp:P-+P such that 
(2) fp(Rgu) =fp(u)h(g), uEP, g@G, and h: G~G is a homomorphism. 
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Because of (2) fp maps fibres into fibres, and to fp there corresponds a diffeo- 
morphism of V, say fv ,  such that the following diagram is commutative 

fv 
P ~ P  

~r t f v i ~r 
V , V  

The automorphism f i s  at the same time a mapping for the corresponding con- 
nection, it maps the horizontal subspace at u into a horizontal subspace at 
fp(u); for a given point u ' E  7r-1 (fv(x)),  we can find, in general, only a 
u E 7r -1 (x) and a g E G (since fp has not to be onto) with 

U' = fp(u)g = RgOep(U)) 

Then we define the new horizontal subspace at u', Hu,, by 

Hu' =Rg*(fe*(Hu)) 

and we obtain in general a new connection F'  in P, independent of the choice 
of our u and the corresponding g. 

Lemma 3 (Kobayashi & Nomizu, 1963). If  co and f2 are the connection 
form and the curvature form of P, respectively, then the corresponding con- 
nection form w'  and curvature form ~2' in P'  are related by 

Or 

r 
h .  o ~ =re  w (5.1) 

h .  o E~ = fp*U~' (5.2) 

or in other words' the diagram 

¢..o 
TP ~ Ge 

r e * l ,  l b .  
TP ~ Ge 

is commutative. The mapping h associates to a 1-parameter subgroup in G a 
new 1-parameter subgroup, and therefore, h ,  transforms the generator of this 
1-parameter subgroup into a new generator. 

Definition. We call a bundle automorphism fbundle  symmetry, or P- 
~mmetry ,  if f maps P into F, F is said to be invariant under f;  this means 
f m a p s  the horizontal subspace at u into the horizontal subspace at fp(u), or 
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Therefore, if P is invariant under f ,  we get, as a consequence of (5.1) and 
(S.2), 

~ ( 2 )  = ~o0~p,Jb; 2 E  rue  

~2(2, I') = a ( f p , 2 , f e ,  f'); 2 ,  Y ~ T , P  

In general, the diffeomorphism f v  will map the loop space C(x) at x E V into 
the loop space C(fv(x)) at the poin t fv (x ) . f i s  now a P-symmetry, iff the 
corresponding bundle transformation fp maps horizontal curves into hori- 
zontal curves: 

(Xt, xld ta ) horizontal loop ~ f  ( f  v(xt), fp(tIl ta)) horizontal 

In the following we shall look at P-symmetries which are induced by isometrics 
of the Minkowski space-time; since the elements of a Yang-Mitls bundle are at 
the same time Lorentz covariant, a transformation in V, say e.g. 

f v : xU-~ A"vx v 

induces at the same time a fibre transformation 

ft': ff/a(X) "+ U(A)$a(Ax), ~ a  = 1 . . . . .  N 

U(A) being the representation of the Lorentz group for the fields ~a. Consider 
a 1-parameter transformation on Minkowski space-time, say ft ,  represented by 
the vector field X; to f t  there corresponds a 1-parameter transformation in P, 
ftl', which transforms the chosen frame { ~a } into 

~t~ = / t e ( ¢ . ) ,  ~a ,  ~(~t~) =L(xo) ,  ~ ( G )  = xo 

Denote by {~a} the corresponding horizontal frame with 

~a = ~oa, ~a ,  and ~ta = ~tbgaO(t) 

The the transformation law for the connection form under cross-section trans- 
formations 

c°(~ t) = adg-l(t) w($t)  + g-1(t)g(t) 

implies, since 6o($) = O, 

co(~t) =g-1(t)g(t) 

~t is related to ~o by the transformation f te ,  and we assume furthermore P 
to be invariant under this bundle automorphism; therefore 

~(~,) = oo(f,p.(~;o)) = ~o(~o) : A e a ~ ,  ~t ,  A = const. 

and A determines a 1-parameter subgroup of the structure group G. 

Lemma 4. Let f t  be a 1-parameter group of bundle automorphism induced 
by a space-time symmetry X, which leaves the Yang-Mills connection P 
invariant. We express the connection form locally with respect to the frame 
(x, ~ta}, co = PudxU. Then Pu XU is constant on Vand generates a 1-para- 
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meter subgroup of G, which gives the transformation between the transformed 
frame St and the horizontal frame ~t in the direction of X. 

This Lemma enables us to define a linear mapping between the Lie algebra 
of a Minkowski transformation group I and the Lie algebra of the structure 
group G of a Yang-Mills bundle. 

Lemma 5. Let I be a group of Minkowski transformations which induce a 
corresponding group of bundle automorphisms I. Suppose the connection is 
invariant under I; then 

X-+ FvX", X~X' (O 

defines a linear mapping ~:gg(/)+Ge, .~(/) is the Lie algebra o f / ,  with respect 
to the local cross-section {x, ~ta> of P, or invariantly expressed 

X + ~ ¢ ( f 0 ,  J~ generates f 

Lemma 6. Under the condition of the above lemma we find 
(1) If f" is horizontal on P, X induced by a P-symmetry j~, then [2, ~] is 

horizontal; 
(2) the curvature satisfies 

Proof. (1) J[. (co@)) = L2co(f2" ) + co([;~, Y]) since co is invariant under J~ 
L~co ; 0, but Y is horizontal w(Y) -- 0, therefore co((X, I0) = 0 

(2) From the second structure equation we have 

~ ~ ~ ~ 1 

a(x, r~ :  d~o(x, r~ + 7 [~o(;b, ~(f0~ 

: ! ~J?. ~o(f0 - f .  ~ ( 5 - ~ ( [ 2 ,  fq> + [ ~ ( g ,  ~(f~] > 
2 

and from the invariance condition 

L ~ ( f ~ :  2. o4fo - ~([2, 7,]): o 
L ~ ( 2 )  = ~. ~(20 - ~([~, x l ) :  o 

As a consequence we get, for example, that for a translation invariant connec- 
tion of a Yang-Mflls theory all the connection and curvature elements will be 
constant; therefore, all the subspaces m k of the Lie algebra of the infinitesimal 
holomony group are obtained by 

m o = ([VuX '~, I'vYV];X, Y on V} 

ml =mo + [cS(X), tool 

m2 =mo + ItS(X), too] + [cS(X), ItS(X), too]] 
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and  so  o n ,  s ince 

VxRt~v = [f'O X°  , Rt~v] 

~ :  Te 4 "+ G e is the linear mapping, defined in Lemma 5, of the Lie algebra of 
the translation group into the Lie algebra of the structure group. 

More general P-symmetries of a Yang-Mills bundle P induce some conse- 
quences on the spaces ink(u), defined in Section 4. Let X be the generator of 
a f-symmetry, and V, IV arbitrary vector fields on P: 

2. a(~, ~ = L~a(~, ~) + a([~, ~1), ~ + a(V, IX, W]) 
= a ( [ x ,  v], IV) + a ( v ,  [x,  IV]) (s.3) 

In order to relate X. gZ to the covariant derivative in the direction X we need 
the identities of Lemma 2: 

hor2~  .~2 = - ver2~ .~Z + 2 ,  . a  

ver L - ~ 2  = - [COu(~"), al 
ho r2 , . a  = 2 , a  + [~u(2), at, 

or  
V x R  m, = X .  Ruv + [ r x ,  R~v], 

COu (if 0 const. 

X./~uv given by (5.3) 

Lemma 7. The direction derivative of the curvature in the direction X of a 
symmetry transformation is a linear combination of the curvature elements 
themselves, or 

2. moO) -- ~o(~)  
and the corresponding covariant derivative in this direction satisfies 

is constant. 

Similar relations hold for higher order elements in the infinitesimal 
holonomy group: 7 E m k ( u )  of the form (Kabayashi & Nomizu, 1963) 

?-- 

2~. are horizontal lifts of 3,,. 
ZLet J( be a generator of t'he P symmetry, then [2, J?.l] is horizontal, i.e. 

X .  Xui = X~, i. X + Zui , Zui is horizontal 

where the second term is of type (k); by permutation of the )(gi with J~, we 
get 

2.(2,~...2,~a(P, fc))=2,,...2gk(2.a(P,~))+g, ~mk(u) 
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Therefore, together with Lemma 7 we have shown 
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Lemma 8. The subspaces mk(u ) of the Lie algebra of the infinitesimal 
holonomy group are stable under these symmetry transformations generated 
by X 

2 .  ink(u) c_ mk(u), g-k = O, 1 . . . .  

or, in other words, if f is of type 

then X. f u l . . ,  ukpo can be expressed with the aid of these elements them- 
selves. 

In the following we look a little closer to the bundle symmetries which are 
induced by a group of isometries on Minkowski space-time, say I,  this means 
that there exists a group of transformations, L in P which transforms the fibre 
rr-l(x) into the fibre rr-l(fv(x)), f v  E L Let ~ be an arbitrary point in P with 
7r(~) = Xo, and take those elements o f / ,  which leave invariant the point Xo, 
h(xo) = Xo; the set of these transformations build the stability group ~ 0  at the 
point Xo. Now, in general, to h EIxo there corresponds an element in I, say he, 
such that 

he: ~(Xo) -+ hp(~(h(xo))) = he(~(Xo)) 

with hp(~(Xo) ) e n- l (xo) ,  since hp is a bundle automorphism which does not 
alter the structure of the fibre. Therefore, we can find an element g in the 
structure group such that 

hp($(Xo) ) : $(xo)g , g E G  

or, in other words, this defines a mapping h.'Ix o -+ G, h(h) = g, which turns out 
a homomorphism since, if h, h' EIx o with the corresponding hp, hp, E 7  

(h/, o hjo) (~(Xo)) = hp(h'e(g/(Xo))) = h:e(g/(xo)g') = hl~(¢(Xo)ft(h')) 

= (hp(t~(Xo)))h(h') = (tP(xo)g)h(h') 

= (~(xo)h(h)h(h') = ~(Xo)(h(h)ft(h')) 
© r pr on the other side, hp hp = hp 

(h,o o h~,) (~(x0))  = ~ ( x o ) g  'p = ~ (Xo) f i (h" )  

= ~(Xo)(f i (h o h')) 

and therefore 

fi(h o h') = h(h)-fi(h') 

where the first product, h © h' is the product in I, and the second product, 
fi(h)" h(h') is the product in the structure group G. fi depends in general on the 
chosen ~(Xo). 

As an illustration we shall find the mapping h in the case of the Lorentz 
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frame bundle/ '4  over a general space-time V, where I is now the group of  
isometrics of  V. For a fixed xo,  an element h ~I~o will generate a linear trans- 
formation h ,  in the tangent space Tx V 

(h.Xxo)u aXVlxoXVxo ; Xxo=XUxo~ u (5.4) 

ff the element h is represented locally by x 'u = hU(xV). (5.4) is called the linear 
representation of  the stability group at x o, say Av u (Xo) = OhU/OxV[xo. There- 
fore, h transforms the Lorentz frames at the point x o, u o = (Xo, Xa(xo) ) 

h/X~(xo)) = h,Xa = (a~(xo)X~(Xo))0~ 

and we can find the corresponding g e G4 by 

hp(X~(xo)) = X~(~o)g~a 

o r  

AUv(xo)Xa%~co) = Xbt~(XO)gba; if Xau Ybu = 6ba 

gb a = y~(Xo)A~. (xo)XVa(xo) -  A~ (Xo) 

which defines our mapping h : / z o  ~ G4, since Aba are the tetrad components 
of  AUv. The explicit form for h shows indeed that h is a homomorphism. 

For a second example, we look at a Yang-MiUs bundle over Minkowski 
space-time; tet I be especially a realisation of  the rotation group in Minkowski 
space-time V such that the surfaces of transitivity are 2-spheres S 2 . Take an 
x o E S  ~, defined by x ° = const., r = const., and a u o ~Tr-l(xo) with Uo = 
(x o, ~a(Xo)) where the ~a'S transform at the same time covariantly under a 
representation o f  the Lorentz group, say U; ~rn span a basis of  this represen- 
tation space, m = 1 , 2 , . . . ,  M, M = dimension of  the representation. Then 
every element ~a(Xo) of  the Yang-Mills frame can be decomposed 

~a(Xo) = ~m(xo)qSm, a = 1 . . . . .  N 

Every element hEIxo generates a transformation of  the Yang-Mflts frame 

h-~ V ( h ) ~  = (U(h)mm ' ~ "  (Xo))~m, h(xo) = Xo 

which defines the mapping hp. Therefore, we can find an element g E G, such 
that 

v ( h ) ~ ( x o )  = Cb(xo)g~ 

by defining elements )frn (Xo) 

x%(xo)¢%(xo) = 8% 

gb a = Xbrn ( x o ) U ( h ) m m ,  ~)m' a(Xo ) = h (h )  

. . . . . . .  c) t Since the re~resentatlon U is by defimtlon a homomorphlsm, U(h h ) = 
U(h)U(h'), h(h) turns out to be also a homomorphism Izo --> G. 

In Lemma 5 we defined a linear mapping ~:~a~6"~(/)-+ Ge with respect to a 
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local cross-section (x, ~a(x)); denote by h ,  the mapping for the corresponding 
Lie algebras, i.e. 

h,!ffta(Ixo ) ~ Ge for fixed point Xo E V 

If X E3e{(I), X generates a transformation in V, f t ,  and a corresponding trans- 
formation ftP for the fibres with 

 t(xo) = ftp( (xo)) =  (Xo)fi(L) 

then for the tangent vectors, which are completely vertical, we find 

This shows that the mapping ~ reduces, for an element of the Lie algebra of 
the stability group, to the above-defined mapping h, .  Let the connection F 
be invariant under the transformation group/induced by a group of isometries 
I. Fix x o E V and u o = (Xo, $a(Xo))EP; take an X E ~ ( / )  and an element 
h Elxo;the 1-parameter group of transformations h o f  t o h -t  , f t  generated 
by X, is generated by adh(X) and transforms Uo into a new frame 

(hp o L p  o 

= ( h e  

-- (he 

Since P is assumed to be invariant under the transformation group 1, we know 
from Lemma 1 that co(X) is constant, where X generates J~ .  The problem is 
now to find a relation between co~ (~YO and co~ (Y), where Y generates 
hp O fft P O h e - l :  

and therefore 

co~ (f') = co¢ (he*(Rfi(n-,),2~ )) 

= b.2 .¢  ) 

= (adft-l(h-I))coqj (f(~) = adkt(h)do~ (X~)  (5.5) 

or, if we express co with respect to the local cross-section, as in Lemma 4, this 
means 

P u ru = ( adh( h ) ) f  ~ X~ (5.6) 

X is the direction for the transformation ft ,  Y is the direction rotated by the 
stability group element h Elxo. Therefore, as an important consequence, we 
obtain the following result: the connection coefficients r'u evaluated in the 
direction of space-time isometries have not to be 'isotropic' if the application 

is non-trivial. This result is not in agreement with the result for spherically 
symmetric Yang-Mills connections obtained by Ikeda & Miyachi (1962) and 
later proved by Loose (1965): analytic spherically symmetric solutions of the 
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Yang-Mills equations (3.9) should admit only an Abelian holonomy group 
(which, in this case, is identical with the infinitesimal holonomy group). 

The former proof in Loos (1965) was based on the following assumptions: 
(1) the Yang-MiUs connection is invariant under a realisation of the rotation 

group SO(3) in Minkowski space-time; F is also assumed to be static; 
(2) we look at a hypersurface x ° = constant, and introduce on it spherical 

coordinates with r = constant defining a 2-sphere. 

The transformation property (5.5) for the connection form und~ transforma- 
tions of the isotropy group does in general not imply that g2(X, Y), XE Txo $2, 
Y E Txio $2, is independent of the direction of X as it was assumed to be the 
case in lkeda & Miyachi (1962). If the Yang-Mflls connection is 'isotropic' in 
the sense that h is trivial, then surely, we can conclude for the Yang-Mills 
curvature 

R o 0  - -  = -- = 0 

and then the Bianchi identities and the Yang-MiUs equations imply immedi- 
ately that the Lie algebra of the infinitesimal holonomy group, spanned by the 
dements of type (4.2), is commutative. 

Since the Schwarzschild solution of Einstein's equations is indeed a solution 
of a Yang-Mills type equation with spherical symmetry-in this case determin- 
ing the external geometry of a space-time-this example represents in some 
sense a solution of spherically symmetric Yang-Mills equations with non-Abelian 
infinitesimal holonomy group. 

Particular solutions to Yang-Mills equations over Minkowski space-time can 
be found in Kerbrat, 1970; Ikeda & Miyachi, 1962; Loos, 1965, 1967; and 
Uzes, 1969. 
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